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     INTRODUCTION 

 Anthropogenic land use change influences the distribution, 
abundance, and behavior of disease vectors. 1,  2  There is a grow-
ing body of evidence that habitat disturbance resulting from 
anthropogenic land use change can lead to an increase in vec-
tor abundance, and in many cases, increased risk of disease 
transmission. 3–  6  In the northeastern Peruvian Amazon, the 
malaria vector  Anopheles darlingi  human biting rate in defor-
ested areas near recent road development was much greater 
than in forested areas. 7  Forest loss and agricultural devel-
opment in the Peruvian Amazon have also been associated 
with increased mosquito abundance caused by an increase 
in standing water held by plants (e.g., bromeliads and pine-
apple). 8  Many species of anopheline mosquito malaria vectors 
can increase in abundance in response to increased sun-
light availability, a common occurrence in deforested areas. 
In deforested African highland agricultural sites, increased 
malarial vector survival rate and juvenile survival rate were 
observed. 9  Habitat fragmentation, defined as breaking apart 
of habitat, independent of habitat loss, is a manifestation of 
landscape disturbance. 10  Forest fragmentation has been asso-
ciated with increased tick vector abundance and prevalence of 
the Lyme disease agent  Borellia burgdorferi  in tick vectors. 11,  12  
Anthropogenic land use changes in Israel have been associ-
ated with increased abundance of the cutaneous leishmaniasis 
vector  Phlebotomus papatasi  and increased infection preva-
lence of  Leishmania major  in rodent hosts. 13  

 In this study, we examine relationships between anthropo-
genic habitat disturbance and population characteristics of the 
triatomine bug  Rhodnius pallescens  in a rural landscape of 
Panama. For the purposes of this study, a landscape is defined 
as a spatially explicit area comprised of interacting structur-
ally and spatially heterogenous components or ecosystems 
that may vary in arrangement and architecture. 14  We define 
habitats as qualitatively distinct vegetation types comprising 
the landscape. 

  Rhodnius pallescens  is considered to be the primary vec-
tor for  Trypanosoma cruzi  infections of humans and ani-
mals in Panama, some areas of Costa Rica, and Colombia. 15–  19  
 Trypanosoma cruzi , the agent of Chagas disease, is a major 
cause of heart disease and general morbidity among humans 
in Latin America, with estimates of 8–15 million infected 
persons. 20,  21  Many studies have observed a close association 
between  Rhodnius  species, palms, and Chagas disease risk. 22–  26  
The palm  Attalea butyracea  provides the primary breed-
ing habitat of  R. pallescens . 27   Attalea butyracea  is ubiquitous 
throughout lowland tropical forest landscapes in Panama, 
ranging from intact forests to deforested areas. High densities 
of  A. butyracea  within forests are also commonly associated 
with anthropogenic activities, such as hunting of seed preda-
tors of these palms and past agricultural activity. 28  

 The intimate  R. pallescens –palm relationship and wide dis-
tribution throughout the landscape is ideal to evaluate how 
land use may affect vector abundance across a gradient of land 
use disturbance. Human settlement and agricultural produc-
tion throughout the 20th century has transformed the once 
highly forested rural landscape outside of protected forests in 
the Panama Canal Watershed into a land mosaic dominated by 
cattle pasture, lesser amounts of cropland, human settlement, 
and forest remnants ( Figure 1 ). 29,  30  This recent forest land-
scape disturbance may increase human contact with vector-
borne parasites such as the Chagas disease agent  T. cruzi  by 
increasing vector invasion and re-invasion into domiciles from 
sylvatic foci,  A. butyracea  palms. 31  An extensive meta-analysis 
of  Rhodnius  species suggests that forest habitat loss may 
increase contact between  Rhodnius  and humans. 32  Specifically, 
we investigated how  R. pallescens  relative abundance and 
body condition change in relation to habitat types reflecting a 
gradient of anthropogenic land disturbance in the area of the 
Panama Canal. 

    METHODS 

  Study area, habitat types, and study sites.   The study area 
comprised the landscape surrounding the Panama Canal, 
consisting of habitat components of protected late secondary 
moist tropical forest adjacent to the canal flanked by a 
mosaic of disturbed habitat types whose potential vegetation 
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is lowland moist tropical forest. 33  These highly disturbed 
areas consist of patches of forest remnants primarily located 
in riparian areas, habitat patches in early phases of forest 
regeneration (abandoned pasture), cattle pasture, and human 
settlements (domiciles) ( Figure 1 ). Five habitat types were 
sampled for  R. pallescens : contiguous late secondary forest 
(low disturbance), anthropogenically disturbed patches of 
early secondary forest patches, mid-secondary forest remnants, 
cattle pasture, and peridomiciliary areas. Contiguous late 
secondary forest sites were located in a protected national 
park adjacent to the Panama Canal. These sites have a 
known land use history and forest age (approximately 75–100 
years old). 30  Early secondary forest fragments were areas of 
abandoned pasture or cropland undergoing forest succession. 
These sites were approximately 5–30 years old, and most trees 
within the early secondary sites did not exceed 10 meters in 
height. There was also a predominance of lianas in most of 
these early secondary forest fragments. Mid-secondary forest 
remnants or fragments were forest patches remaining after 
large-scale deforestation of late secondary or mature forest. 
Most of these mid-secondary patches were highly disturbed, as 
most of the economically valuable adult trees were previously 

harvested from these sites, and the floor of most of these forest 
patches were heavily trampled by cattle. Peridomiciliary areas 
consisted of home gardens or yards located within 100 meters 
of a human dwelling. The gardens and yards surrounding 
domiciles were highly variable, some with well-manicured 
lawns and others with tall grass or located near a forest 
patch. Seven comparable sites chosen from each of the five 
habitat types, comprising total of 35 sites, were sampled for 
 R. pallescens  in different habitats along the western and eastern 
border of the Panama Canal Area ( Figure 1 ). Individual sites 
were at least 200 meters apart from each other, based on an 
estimated maximum flight distance for  Rhodnius  sp., with 
most sites located greater than 1 km apart from each other. 34  
Replicate sites from comparable habitat types were located 
at least 600 meters apart from one another. Study sites were 
spread over an area of approximately 600 km 2 . Palms were 
sampled once from each site during the wet season, during 
May–December 2007, to control for possible effects of season 
on  R. pallescens  abundance. Sites from multiple habitat types 
were sampled within each month, and an attempt was made 
to spread the sampling of different habitat types evenly across 
the wet season. The sites chosen were areas where the palm 

 Figure 1.    Panama Canal Area and approximate location of study sites/habitat types. White triangle = late secondary contiguous forest; dark 
circle = mid secondary forest remnant; light circle = early secondary forest patch; yellow triangle = pasture; black triangle = peridomiciliary area. 
This figure appears in color at  www.ajtmh.org .    
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 Attalea butyracea  was present. Across this landscape, palms 
are patchily distributed. 

   Palm sampling for  R. pallescens.    At each location, five 
palms were sampled for the relative density of  R. pallescens ; 
an adult  A. butyracea , and the four nearest accessible adult 
 A. butyracea  palms. The initial palm was selected by choosing 
the nearest palm to a random direction and distance less than 
20 meters from the observer. The height at the top of the crown 
base, number and ripeness of fruit racimes, and presence of 
animal (bird and/or mammal nests or resting sites) were also 
recorded for each palm. 

 Three baited traps, modified from a method described by 
Abad-Franch and others, 26  were placed within the crown of 
each palm, left for 24 hours, and checked for  R. pallescens  the 
next day. 26,  35,  36  Palm crowns were accessed with a 20-foot lad-
der or by climbing the palm tree with a rope and harness tree-
climbing technique modified for palms. The modification of 
traps included a food and a hydration source that were pro-
vided for mice within the traps, and traps were covered with 
a small sheet of plastic to provide protection from direct sun 
and rain. Sampling methods are shown in  Figure 2 . 

  After collecting the baited traps, the palm crowns were 
searched for 10 minutes for bugs by a skilled person. The 
number and stage (first through fifth stage nymphs, adult) of 
 R. pallescens  was recorded for each tree. We also recorded the 
sex of adult bugs, weight (mg), length (mm), and nutritional sta-
tus of bugs (fourth and fifth stage nymphs and adults) by eval-
uating abdominal distension and the presence and location of 
a blood meal within the digestive tract. Bugs were assigned the 
following body condition scores based on evaluation of degree 
of abdominal distension and blood meal present in the gut: 
1 = engorged; 2 = good, some abdominal distension blood in 
the foregut, midgut, and hindgut; 3 = moderate, no abdominal 
distension, moderate amount of blood in the midgut, hindgut, 
and rectal ampulla; 4 = thin, thin abdomen, starved or small 
amount of blood present in hindgut or rectal ampulla. 

   Evaluation of trapping efficiency.   To evaluate the efficiency 
of our trapping method, we performed our described trapping 
method (mouse-baited traps with direct search) on eight 
palm trees separated from the sites that were included in 
the sampling scheme. The trees were chopped down, fully 
dissected, and carefully searched for  R. pallescens  that were 

not caught in the traps. Specifically, we dissected the full base 
of the palm crown to actively search for bugs. The number of 
bugs captured by trap and search was then compared with 
total number of palms with palm dissection and traps by 
using a generalized linear model with quasi-poisson errors 
appropriate for count data. 

   Satellite imagery for estimation of normalized difference 
vegetation index.   A normalized difference vegetation index 
(NDVI), aspect, and altitude were measured for each site by 
analysis of 2002 satellite image data of Panama in ArcGIS 
versions 9.2 and 9.3 (ESRI, Redlands, CA). A relatively cloud 
free image of the study area (the best image that could be 
found) was downloaded from 2002 Landsat 7 satellite imagery 
from the U.S. Geological Service, and reflectance data was 
collected from the image after geometric rectification and 
atmospheric correction. The NDVI was calculated from the 
acquired satellite image reflectance data by using Erdas 
Imagine 9.0 software (Leica Geosystems, Norcross, GA). 
Higher NDVI values often represent increase in density of 
leafy green vegetation, making them suitable measurement 
for forest cover and/or plant growth ( http://earthobservatory
.nasa.gov/Features/Measuring  Vegetation). The resolution 
used for calculating NDVI for each site was 90 meters. A 
Mantel test was used to investigate relationships between 
distance between sites and bug abundance. 

   Data analysis.   Parametric and non-parametric statistical 
analyses were performed in R 2.7.1 (2004–2008, the R Foun-
dation for Statistical Computing,  http://www.R-project.org ). 
Because of the hierarchical nature of the data (bug samples 
taken from five palms nested within a site, and site replicates 
nested within each habitat type), linear mixed effects models 
were used to analyze the proportion of palms infested by 
bugs and bug abundance. To analyze the relationship between 
habitat type and the proportion of palms infested by bugs, 
we used a generalized linear mixed model with a fixed effect 
(habitat type), a random effect (site), and binomial errors, fit by 
the Laplace approximation. The Laplace approximation is an 
appropriate generalized linear mixed model fitting technique 
for poisson or binomial data where there are less than three 
random effects and the minimum number of successes or 
failures is greater than five for binomial distributions. 37  To 
test the effect of habitat type on bug abundance, we used a 
Laird-Ware formulation of a generalized linear mixed model 
with a fixed effect (habitat type), two nested levels of random 
effects (individual palm nested within site), and Poisson 
errors. 38  Penalized quasi-likelihood was used to fit this model 
because it was considered appropriate for poisson data with a 
mean bug abundance per tree greater than five. 37  Habitat type 
was considered a fixed effect in the models because it was an 
overall invariant classification scheme. 

    RESULTS 

  Trap efficiency.   The number of bugs captured using the 
trap-direct search method was positively associated with the 
total number of bugs within the palm (trap-direct search plus 
tree dissection) (n = 8 palms) ( Figure 3 ). There was also a 
positive, yet non-significant correlation between the number 
of bugs caught by trap-direct search and the number of bugs 
caught during tree dissection (Spearman’s rank correlation 
ρ = 0.67,  P  = 0.07). Both findings indicate that the trapping 
method used in this study (trap-direct search) was an adequate 

 Figure 2.    Field methods used in the study, Panama.  Left , Capture 
of  Rhodnius pallescens  in palms.  Right , Adult and nymphs of  R. pall-
escens  captured with a baited sticky.    
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representation of relative within-palm bug abundance. On 
average, 28% (range = 0–43%) of the total number of bugs 
found were caught with the baited traps only. 

    Palm infestation with  R. pallescens.    Across all habitat types, 
we recovered  R. pallescens  from 80.0% (140 of 175) of palms. 
The percentage of palms infested with  R. pallescens  was high 
throughout anthropogenically disturbed habitats, ranging 
from 77.1% in peridomiciliary habitats to 91.4% in mid-
secondary forest fragments; the lowest proportion (57.1%) of 
infested palms was in contiguous forests ( Table 1 ). There was 
a significant and moderate dependence between habitat type 
and the number of palms in which  R. pallescens  was present 
(Pearson’s χ 2  = 16.786, degrees of freedom [df] = 4,  P  = 0.002). 
The estimated proportion of infested palms was significantly 
greater in mid-secondary forest remnants (generalized linear 
mixed effects model, binomial errors,  P  = 0.02), and marginally 

significant in early secondary forest fragments and cattle 
pasture than in contiguous forests ( Table 2 ). The proportion 
of palms infested with  R. pallescens  in mid-secondary and 
early secondary fragmented forests combined (n = 70 palms 
examined) was significantly greater than the number of 
palms infested with  R. pallescens  in contiguous forests (n = 35 
palms examined) (χ 2  = 11.698, df = 1,  P  = 0.00062, by sample 
test for equality of proportions with continuity corrections). 

             Relative abundance and distribution of  R. pallescens .   The 
mean number of bugs captured per site differed significantly 
between habitat types (Kruskal-Wallis χ 2  = 28.1, df = 4,  P  < 
0.0001). A generalized linear mixed effects model ( Table 3  
and  Figure 4 ) applied to the data (poisson errors) for the 
relationship between bug abundance and habitat type 
demonstrates significant differences between the number of 
bugs captured in contiguous forests as compared with early 
secondary forest fragments (fixed effects,  P  = 0.004), mid-
secondary forest fragments (fixed effects,  P  < 0.003), and cattle 
pasture (fixed effects,  P  = 0.01). There was a slight negative, 
yet significant ( P  = 0.02) relationship between NDVI and 
estimated bug abundance by the generalized linear mixed 
effects model ( Table 4 ). There was no significant spatial 
autocorrelation in bug abundance between collection sites 
(n = 35 sites;  P  = 0.21, by Mantel test). 

              Nymph:adult ratio.   In all habitat types, the frequency of 
nymphs was greater than that of adults (Pearson’s χ 2  = 10.4291, 
df = 4,  P  = 0.03). However, there was no apparent significant 
difference between the nymph:adult ratio and habitat type (fixed 
effects, minimum  P  = 0.30). The colonization index (number of 
palms with nymphs/number of palms with  R. pallescens ) was 
high throughout all habitat types and ranged from 0.85 in 
contiguous forests to 1.00 in cattle pastures ( Table 1 ). 

   Sex ratio of adult bugs.   Overall, there was no significant 
difference in the relative number of male and female bugs 
captured across all habitat types (n = 181; χ 2  = 0.280, df = 1, 
 P  = 0.60). There was no evidence of dependence between 
 R. pallescens  sex ratio and habitat type (n = 181; χ 2  = 5.27, 
df = 4,  P  = 0.26). 

   Body condition.   There was a dependent relationship between 
habitat type and the frequency of bugs in each qualitative 
body condition class (engorged, good, moderate, thin/starved) 
( P  < 0.0001, by Fisher’s exact test). The proportion of bugs 

 Figure 3.    Trap-search method efficiency test (n = 8 palms dis-
sected) and relationship between the number of bugs captured by 
the trap-search method combined compared with the total number of 
bugs captured with trap-search-tree dissection (best fit line from gen-
eralized linear model with quasi-poisson errors), Panama.    

 Table 1 
   Rhodnius pallescens  palm infestation rates, abundance, density, and population characteristics, Panama *   

Variable Contiguous Peridomicile Early secondary Mid-secondary Pasture Total

% Palms infested with  Rhodnius  † 57.1 (20/35) 77.1 (27/35) 85.7 (30/35) 91.4 (32/35) 88.6 (31/35) 80 (140/175)
No. bugs captured 73 201 299 346 267 1,186
Mean no. bugs captured/site (95% CI) ‡ 10.4 (8.2–13.1) 28.7 (24.9–33.0) 42.7 (38.0–47.9) 49.4 (44.3–55.0) 38.1 (37.7–43.0) 33.8 (32.0–35.9)
Overall density of bugs per habitat type § 2.06 5.74 8.54 9.86 7.63 6.78
Mean density of bugs per infested palm ¶  

(95% CI) 3.65 (2.9–4.6) 7.44 (6.5–8.6) 9.97 (8.9–11.2) 10.81 (9.7–12.0) 8.61 (7.6–9.7) 8.47 (8.0–9.0)
No. of bugs/trap night (no. trap nights) 0.56 (104) # 1.91 (105) 2.85 (105) 3.29 (105) 2.53 (105) 2.3 (524)
No. adults captured 12 48 65 68 35 228
No. nymphs captured 46 153 234 277 232 942
Total nymph:adult ratio 3.83 3.19 3.62 4.07 6.63 4.12
Colonization index ** 0.85 0.93 0.90 0.94 1.00 0.93
Mean ± SD weight/length ratio (mg/mm) 

of N4, N5, and adults 5.10 ± 2.32 2.77 ± 0.42 3.91 ± 2.24 3.64 ± 2.45 4.08 ± 1.56 3.97 ± 2.2
  *   CI = confidence interval.  
  †   No. palms with bugs/total no. palms examined.  
  ‡   Seven sites per habitat type.  
  §   No. bugs captured/no. palms, sampled per site.  
  ¶   Mean no. of bugs captured per infested palm.  
  #   One trap predated.  
  **   No. palms with nymphs/no. palms with triatomines.  
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that were in good condition and engorged was significantly 
greater in contiguous forest habitats (n = 37, 59.5%) compared 
with disturbed habitats (n = 278, 6.8%) (two-sample test for 
equality of proportions with continuity correction, χ 2  = 95.2, 
 P  < 0.0001) ( Figure 5 ). The mean ranks of the weight:length ratio 
of adult and nymph (fourth to fifth stage nymphs)  R. pallescens  
captured in continuous forests was higher than bugs cap-
tured in anthropogenically disturbed habitat types (W = 7408, 
 P  < 0.001, by Wilcoxon rank-sum test). There was no significant 
difference between the mean ± SD ranks of weight:length 
ratio measurements between males (4.78 ± 1.54, n = 87) and 
females (4.9 ± 1.54, n = 94) (W = 4186,  P  = 0.78, by Wilcoxon 
rank-sum test). 

     DISCUSSION 

 It is well established that  A .  butyracea  palms are the primary 
ecotype for  R. pallescens  throughout their range in Central 
America and northern South America. 15,  32  Palm trees are con-
sidered to be a risk factor for Chagas disease in neotropical 
landscapes. 32,  39–  42  However, less is understood regarding how 
vector abundance in palms varies relative to land use/anthro-
pogenic disturbance surrounding their microhabitats. We 
present evidence that anthropogenic activity, resulting in the 
creation of forest remnants, regenerating forests, cattle pas-
ture, and domiciliary areas, is associated with increased pres-
ence and abundance of  R. pallescens  in  A. butyracea  palms. 

 The percentage of palms infested with  R. pallescens  within 
and among each habitat type was relatively high (range = 
57.1–91.4%), compared with other studies of triatomine s  palm 
infestations. 41,  43  In Ecuador,  R .  ecuadoriensis  infestation of 
 Phytelephas aequatorialis  tagua palms was 23% of 110 palms 
examined. Similar to our study, there was a higher percentage 
of  R .  ecuadoriensis  palm infestation of tagua palms  Phytelephas 
aequatorialis  from deforested sites in Ecuador. 26  Unlike the 
present study, where there was a high palm infestation with 

 R. pallescens  in forest fragments, there was no evidence of 
infestation of tagua palms by  R .  ecuadoriensis  in forest rem-
nants in Ecuador. 26   Rhodnius neglectus  infestation rates in 
 Mauritia  palms in Brazil ranged from 18.6% to 37%. 43  In a pre-
vious study of  R. pallescens  infestation of  A .  butyracea  palms 
(n = 30) examined from an urban and rural area of Panama, 
the proportion of infested palms from urban, rural, and for-
est areas were 100%, 80%, and 90%, respectively. 44  Similar to 
the present study, high palm infestation rates with  Triatoma 
sordida  (96.2%) were observed in northeastern Argentina. 42  
It is possible that  Rhodnius  sp .  palm infestation rates in our 
study, although high, may be underestimated. In the Amazon, 
occupancy modeling of  Rhodnius  in palms concluded that the 
observed proportion of infested palms were much lower than 
estimates of palm infestation when imperfect vector detection 
was included in the analysis. 41  

 A regional and landscape-level study of  Rhodnius  spp. in 
palm trees across the Amazon basin demonstrate a higher 
estimated occupancy of  Rhodnius  spp. in palms in rural versus 
urban areas. 41  Unlike our findings, that study did not find a sig-
nificant difference in  Rhodnius  spp. palm occupancy rates in 
rural areas versus forest settings. However, forests sampled in 
the Amazonian study were actually forest fragments, not con-
tiguous forests. 41  Factors associated with increased triatom-
ine abundance and infestation in palm trees include a large 
amount of decaying organic matter and vegetative growth at 
the base of the palm crown and presence of animal nests in the 
palm such as bird nests. 16,  26,  41,  42,  44,  45  Interestingly,  Rhodnius  spp. 
occupancy and abundance within palms were higher in an area 
of Amazonia with relatively fertile soils than less fertile areas, 

 Table 2 
  Results of a generalized linear mixed model evaluating the relation-

ship between the proportion of palms in which  Rhodnius pallescens  
was detected and habitat type, Panama *   

Effects Estimate Standard error z-value  P 

Fixed effects
Intercept 0.4516 0.7869 0.5739 0.5660
Early secondary fragment 2.3969 1.2691 1.8886 0.0589
Mid secondary remnant 3.3053 1.4721 2.2452 0.0248
Cattle pasture 2.4555 1.2535 1.9589 0.0501
Peridomicile 1.5799 1.1888 1.3291 0.1838

  *   Fixed effect = habitat; random effect = site; family = binomial; link = logit, fit by the 
Laplace approximation.  

 Table 3 
  Results of a generalized linear mixed model evaluating the relation-

ship between the number of  Rhodnius pallescens  captured and hab-
itat type, Panama *   

Effects Estimate Standard error t-value  P 

Fixed effects
Intercept 0.9509 0.2933 3.2422 0.0015
Early secondary fragment 1.1324 0.3665 3.0892 0.0043
Mid-secondary remnant 1.1683 0.3666 3.1872 0.0033
Cattle pasture 1.0016 0.3687 2.7163 0.0108
Peridomicile 0.6543 0.3843 1.7024 0.0990

  *   Fixed effect = habitat; random effects = individual palms nested within sites; family = 
poisson(loglink) fit using maximum likelihood.  

 Figure 4.    Mean number of  Rhodnius pallescens  captured per 
site across different habitat types (n = 7 sites per habitat type) in the 
Panama Canal Area (generalized linear mixed model significance 
codes:  **  = < 0.005,* = < 0.05, • = < 0.1).    

 Table 4 
  Results of a generalized linear mixed model examining the relation-

ship between normalized difference vegetation index and the total 
number of  Rhodnius pallescens  captured per site (175 palms sam-
pled across 35 sites), Panama *   

Effects Estimate Standard error z-value  P 

Fixed effects intercept 2.437 0.5629 4.33 1.5 × 10 –5 
NDVI 0.0078 0.0034 −2.28 0.022

  *   NDVI = normalized difference vegetation index.  
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suggesting that edaphic factors may also influence triatomine 
abundance in palms. 41  

 In the present study, habitat type and a related measure of 
forest/vegetation cover, the NDVI, correlated with  R. pall-
escens  abundance in palm trees because there was a signifi-
cantly greater number of bugs captured in anthropogenically 
dominated habitats compared with contiguous late secondary 
forests. Additionally, there was a negative relationship between 
NDVI and vector abundance ( Table 4 ); the highest NDVI val-
ues were found for contiguous forest sites. Similarly, in stud-
ies of  R .  neglectus  in the palm  Mauritia flexuosa , there was 
increased bug abundance in palm trees in rural areas versus 
sylvatic environments. 46  In fragmented and deforested land-
scapes, the highest  R. pallescens  abundance was in mid-sec-
ondary and early-secondary forest fragments, with lower bug 
abundances in cattle pasture and peridomiciliary areas. The 
lower mean abundance in peridomiciliary sites may be caused 
by a greater range of total bug abundance per site caused by 
the diverse nature of the peridomiciliary sites. There was also 
variation in the way that each domiciliary site was maintained 
(well-manicured lawns, adjacent to cattle pasture, and some 
sites near forest patches) and in the quality of houses and pres-
ence of domestic animals (from a few dogs and chickens to a 
large number of domestic fowl and dogs) surrounding homes 
in peridomiciliary areas. 

 Our data indicate that mid-secondary forest remnants and 
early secondary forest patches support a relatively high abun-
dance of  R .  pallescens . Mid-secondary forest remnants are 
scattered throughout the pastoral landscapes in the Panama 
Canal Area. These forest remnants are primarily riparian 
and surrounded by a matrix of cattle pasture, agriculture, 
rural dwellings, or dwellings at the suburban/rural interface. 
Early secondary forests originate from regenerating pasture, 
but may have some large woody tree species and high den-
sities of palms. Forest patches in primarily deforested rural 
areas may provide hiding places from potential predators, 
water resources, and protection from temperature extremes. 

Additionally, fruiting trees such as palms within these forest 
patches may provide important nutritional sources for many 
vertebrate species. Forest remnants may serve as key resources 
for insectivorous birds and mammals. 47  Forest species that can 
live in edge habitats can invade fragments or remnants, thus 
increasing local population densities of animals. 48  

 Forest patches in deforested landscapes often support rela-
tively high mammal densities caused by alterations of trophic 
structure by mesopredator release (an increased in medium-
sized generalist omnivores in the deforested matrix and forest 
fragments in part caused by loss of top predators) and sup-
plemental resources (crops, human food waste) provided by 
human activities within the fragmented landscape. 49  Some ani-
mals that respond positively to forest fragmentation may not 
be commonly hunted for food, and can maintain populations 
in deforested landscapes. Forest patches may also be used as 
an additional refuge for animals that may be dispersing or 
moving in an agricultural matrix, and for permanent residents 
of these fragments. 50  Palm trees within forest patches may 
also provide key hiding and nesting sites for arboreal mam-
mals and other animals, increasing vertebrate palm occupancy 
and providing a relatively stable and abundant food resource 
for  R .  pallescens , leading to the relatively high abundance of 
 R. pallescens  in early secondary forest sites and mid-secondary 
forest remnants.. 

 Environmental effects, such as altered microclimate, may 
also lead to higher numbers of  R. pallescens  inhabiting for-
est remnants and pasture. In tropical forest fragments, edge 
effects such as lowered humidity can extend 100 meters into 
the fragment, 50  which can influence the abundance of  R. pall-
escens  that may benefit from the lower humidity versus excess 
humidity. High humidity is associated with increased mortality 
of  R .  prolixus  caused by the fungal pathogen  Beauveria bassa-
nia . 51,  52  Relatively high humidity in contiguous forest environ-
ments may increase mortality and lower vector abundance. 

 Additionally, food web structure disruption (potential loss 
of natural enemies, predators and pathogens of  R. pallescens ) 
may support higher vector abundance in deforested land-
scapes. It is also possible that in there is a loss of ecological 
trophic complexity in deforested landscapes that leads to a 
loss of an intact suite of predators, pathogens, and specialized 
parasitoids from the ecosystem. 40  Understanding how para-
sitoids and pathogens of  R .  pallescens  respond to ecological 
disturbance is an unexplored but important avenue for future 
investigation. 

 Compared with other habitat types, the nymph:adult ratio 
is lowest in cattle pastures. This observation could be caused 
by emigration of adults from pastures because there are less 
hosts to feed from in space and time, with adults emigrating 
from pastures at a high rate to areas with a more constant or 
reliable food supply or lowered adult survivorship in pastures. 
In cattle pasture, the colonization index is the highest of all 
habitat types, implying that many adult bugs may reproduce 
in pastures, yet do not reside for an extended period of time 
within them, possibly caused by higher mortality of adults in 
cattle pasture (sink habitat), or emigration to higher quality 
sites (forest fragments, peridomicile). Cattle pastures may thus 
act as population sinks for  R. pallescens  at a landscape scale. 
Alternatively, bugs may use palms in cattle pasture as stopover 
sites during migration to more suitable habitat patches. 

 Although it was not statistically significant,  R. pallescens  in 
contiguous forests tended to be in better physical condition 

 Figure 5.    Qualitative body condition indices of  Rhodnius palle-
scens  captured in different habitat types, Panama.    
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compared with bugs in fragmented landscapes. Because 
starved triatomine adults can have a higher dispersal probabil-
ity or potential than fed bugs, 53  dispersal rates may be higher 
in fragmented landscapes, leading to a higher probability that 
bugs may enter human dwellings in search of a blood meal. 

 Study results suggest that anthropogenic land use change 
leads to a higher abundance of  R. pallescens  and that for-
est remnants may be sources for  R. pallescens  at a landscape 
scale in rural areas dominated by anthropogenic activity. 
Deforestation is hypothesized to increase contact between 
Chagas disease vectors and humans. 32,  39  It is important to 
emphasize that a higher abundance of  R. pallescens  in a habi-
tat does not necessarily translate to increased human Chagas 
disease risk because socioeconomic and human behavioral 
factors are important to consider when evaluating disease risk 
to humans, as emphasized by studies of leishmaniasis in Costa 
Rica 54  and Lyme disease incidence in relation to forest frag-
mentation in Connecticut. 12  

 It is unknown if these habitat-related effects on bug abun-
dance vary seasonally. Season, climate, and relative humid-
ity can influence triatomine dispersal. 55  However, samples 
were only collected during the wet season. It is possible that 
 R. pallescens  populations decrease during the dry season in 
deforested habitats because of excess sunlight, temperature 
extremes, and low humidity. In our study, differences in micro-
habitats (temperature and humidity) within the palm crown 
were not measured. Our study also did not capture long-term 
trends in bug abundance, body condition, and age structure 
that may be caused by climate-related (e.g., El Niño effects) 
fluctuations in host population abundance. 

 There is a need for further long term surveillance of  R. palle-
scens  populations in deforested and forested areas in Panama. 
Understanding how long-term variation in climate and rain-
fall interacts with habitat associated abundance is important 
in predicting and identifying further localized hotspots of bug 
abundance and potential  T. cruzi  transmission. Because of sea-
sonal variations, global warming trends, and continued forest 
destruction, long-term monitoring of different habitat types at 
a landscape scale for triatomine vectors is needed throughout 
their range. This type of long-term integrated monitoring and 
control strategy has been used for  Triatoma infestans  popula-
tions in some rural areas of the Argentinean Chaco and has 
proven to be effective in reduction of Chagas disease vectors 
and risk to local inhabitants. 56  
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